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Abstract
Current practices for agent-infrastructure interaction en-
force agent designers to hard code the name and the use
of the infrastructure components in the agent. Therefore,
agents can only function within an environment which is
a priori known to the agent designer. Even in these en-
vironments, agents are not robust against the modification
or failure of the infrastructures that may occur at run time.
This makes agents fragile in the context of distributed, large
scale, and complex environments. We argue that seman-
tic technologies can be employed to overcome these limita-
tions. This paper introduces an ontology called OWL-T that
supports the specifications of infrastructure components
that allow agents to reason about the functionality and the
use at run time. We use the term extrospection for the rea-
soning done by the agents for the discovery and the use of
the infrastructure components based on the tasks and the
goals of the agent. A proof of concept implementation il-
lustrates the use of OWL-T in a multi-agent foraging sce-
nario.

1 Introduction
Agents in a multi-agent system (MAS) not only interact
with one another but also interact with the infrastructure
in their environment. Neither the set of agents nor the in-
frastructure in the environment should be assumed static.
That is, various agents can join or leave the environment
and various infrastructure components can be uploaded or
modified at run time. Although, research on agent commu-
nication languages (ACL) [1] studied agent-agent interac-
tion at the semantic level to cater for dynamism and hetero-
geneity, agent-infrastructure interaction still does not enjoy
semantic interoperability. Thus, agents that are designed to
execute in an environment with a fixed infrastructure can
not adapt to the run time changes to the infrastructure com-
ponents and simply fail to accomplish their task.
The aforementioned difficulties arise from the fact that the
interaction between agents and the infrastructure compo-
nents is usually defined through interfaces with no associ-
ated semantics [17, 13]. Such interfaces do not allow agents
to reason about the purpose or the use procedure of the in-
frastructure components. Weyns et. al. [19] identify se-
mantic interoperability as a future challenge at the protocol
level and continue:

“The issue of protocol governs the degree to
which an environment is open to heterogeneous
agents, or to agents that are designed without ad-
vance knowledge of the environment” [19, p. 39]

Infrastructure is defined as the set of components and ser-
vices that help agents to transparently access the resources
[19]. Further more, we use the term tool for the services that

are relevant to agent’s task. For example, a printer driver is
a service and it becomes tool for an agent if the agent some-
how needs to print a document to reach a goal. In this paper
we will use the term infrastructure component and the ser-
vice interchangeably.
Omicini et. al. [11] postulated that agents should be able to
discover and use services that are appealing for their task
at run time. They elaborate on five levels with increas-
ing environment awareness on behalf of the agent. The
work demonstrated in this paper corresponds to level four
of their taxonomy which is defined as: agents capable of
autonomously selecting and using the services in the en-
vironment. We employ semantic technologies for build-
ing an information model that can be interpreted by the
agents for this purpose. We also define an unambiguous for-
mal semantic (what the service can be used for), and prag-
matic (how the service can be used) for such an information
model. We propose OWL-T (OWL Tool), an ontology for
describing infrastructure components in the environment.
The name is the result of combining OWL (Web Ontology
Language) as the ontology language used and the concept
of “tool” that is elaborated in the Activity Theory (AT) [2].
The aliCE research group at Università di Bologna [6] has
already sketched the relation between AT [10] and MAS in
various papers [15, 11]. As an extension, we use the term
extrospection “observation or examination of things exter-
nal to the self; examination and study of externals”1 which
is complementary to the term introspection “an examination
of one’s own thoughts an feelings.”2

OWL-T advances the state of the art by introducing a
semantic framework for agent-infrastructure interaction.
OWL-T is the initial step towards a formal background for
studying extrospection and to identify the effect of the en-
vironment over deliberation. OWL-T is also aimed to re-
solve the practical difficulties that arise in the context of
large scale open multi-agent systems.
The paper is organized as follows. Section 2 describes a
MAS architecture that will be built on, in Sec. 3 where
the details of OWL-T are defined. Later, Sec. 5 describes a
scenario where OWL-T is used. Finally, Sec. 6 summarizes
the paper and elaborates on future directions.

2 An Architecture for MAS
According to our view, a MAS comprises agents and the
environment as shown in Fig. 1. The environment further
consists a set of infrastructure components and the infor-
mation about them. In principle, agents and services in the
environment are assumed to be developed and maintained
by different parties. This view is also consistent with the

1Currently, the term extrospection is not in the general En-
glish dictionary. We have adopted the definition given at
http://dictionary.reference.com/browse/extrospection

2On-line Merriam-Webster dictionary http://www.m-
w.com/dictionary/introspection
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service oriented computing [7] where the services and the
service users are developed independently. The query link
in Fig. 1 enables agent to discover the services through
OWL-T. The use link orchestrate the exploitation of the
selected service. Formally, a MAS S is defined as a tuple:

S = 〈A+, E〉 (1)

where: A+ is the non empty set of agents and E is the en-
vironment defined for S . Models for E and A are given
next.

2.1 Environment Model

The environment is a container for the infrastructure com-
ponents and the information about those. Infrastructure
components are concrete non-agent entities that can be in-
voked by the agents. The environment also actively main-
tains its own dynamics through its transition function [18].
The model for E is given as follows:

E = 〈I∗,O,T〉 (2)

where I∗ is the set of infrastructure components that reside
inside the environment. O is the information model that
formally defines the functionality and the use procedure of
the services in the environment. The details of our informa-
tion model, OWL-T, will be given in Sec. 3. The next two
sections will present the infrastructure component model I
and the transition function T.

2.1.1 Infrastructure Component Model

The initial assumption for the services in the environment is
that they are not intentional, goal oriented, or autonomous
as the agents are; in short, they are function oriented
[18, 14]. The relation between the agent and the service
is unidirectional and based on the use of the service by the
agent. At the implementation level, the infrastructure com-
ponent is actually assumed to be a computational object
with its own properties and methods. A model that satis-
fies these assumptions can be given as follows:

Infrastructure component has a name: Each infrastruc-
ture component is uni-quely identified by an id drawn

from the set inf . The alphabet for the infrastructure
uses k, l.

Infrastructure component implements methods: The
set of all the methods that are implemented by an
infrastructure component is defined as the power set
of constant symbols.

MS
def
=== P(const)

Methods have input and output arguments: We define
the input and the output arguments as:

IS
def
=== P(const)

OS
def
=== P(const)

So, a infrastructure component is a tuple:

I = 〈M, INP,OUT 〉 (3)

where M ∈ MS is the set of methods that are imple-
mented by the infrastructure component. INP ∈ IS
(input set) andOUT ∈ OS (output set) are the sets of input
and output arguments that the infrastructure component
possesses due to the methods it implements.

2.1.2 Transition Function

We assume that there is an order for executing the methods
over the infrastructure component. That is, methods can
not be randomly invoked but should follow a sequence in
order to guarantee the correct execution. We call Σ the set
of all those sequences and σ a member of this set. We can
visualize σ as follows:

σ : s0
exec−−→ s1

exec−−→ s2
exec−−→ s3 . . .

where {s0 . . . sn} ∈ M and exec defines the transition that
occurs when an agent executes a method. That is, every
method invocation results in one step advance in σ. In our
terminology, σ actually combines individual methods to ac-
complish an action, therefore we will refer σ as the process



model that realizes an action. The transition function T is
defined as follows:

T : σ ×M→ σ (4)

We will return to T in Sec. 4 after we finish describing
OWL-T. On the other hand, the overall environment model
can be given by substituting (3) and (4) for (2) as follows:

E = {〈Mk, INPk,OUT k〉;O;T : k ∈ inf} (5)

As an example of a service, let’s consider a printer driver.
We will call this driver the PrinterDriver1 with two meth-
ods MPrinterDriver1 which are namely PrintDoc and
Configure. These methods have input arguments INPk

which are document and configFile respectively. No out-
put arguments OUT k are defined for the methods. Fi-
nally, transition function is defined as σPrinterDriver1 :
Configure

exec−−→ PrintDoc. The transition function iden-
tifies the order of the method call for correctly printing a
document.

2.2 Agent Model

A minimal cognitive agent model that can interpret
OWL-T is as follows:

Agent has a name: Each agent is uniquely identified by an
agent id drawn from the set Ag.

Agent has beliefs: The belief set of an agent is the power
set of propositions with no constructors and no quan-
tifiers:

BS
def
=== P(const)

Agent have goals: Goals of an agent are defined in the
same lines with beliefs:

G
def
=== P(const)

Agent has a role and involved in activities: Again, the
activity and the role sets are defined in the same lines
as beliefs:

RoleSet
def
=== P(const)

ActivitySet
def
=== P(const)

Agent can perform actions: The set of actionsAc that the
agent can perform is the union of the set of internal
actionsAa that operate on the agent’s mental structure
and the actions supported by the infrastructure compo-
nent Ai ⊂ Σ (see Sec. 2.1.2):

Ac
def
=== Aa ∪Ai

Then, an agent is a tuple:

〈B,G, a,Q, u,NB ,NG〉 (6)

where:
B ∈ BS is the agent’s initial belief set.
G ∈ G is the agent’s initial goal set.

a : G → Aa is the agent’s private action generation func-
tion.
Q : G × Agrole × Agactivity → inf is the infrastruc-
ture query function that returns the possible components.
The returned components support the goal, role and the
activity of the agent. In that, Agrole ∈ RoleSet and
Agactivity ∈ ActivitySet
u : inf → Mi is the agent’s service use function. Mi is
the subset of all the methods that is supported by the service
and formally defined as Mi ⊂ ⋃

i=0...kMk.
NB : BS×Mi→ BS is the agent’s belief next state func-
tion.
NG : G×Ac→ G is the agent’s goal next state function.
A multi agent system is given by substituting (6) and (5) for
(1):

S = {〈Bi,Gi, ai,Qi, ui,N
B
i ,N

G
i 〉;

〈〈Mk, INPk,OUT k〉,O,T〉 : i ∈ Ag, k ∈ inf} (7)

Assume a hypothetical agent with the initial belief B of
hasDocument(doc1) and the initial goal G of Print(doc1).
Additionally, assume that our agent is involved in the activ-
ity Agactivity called WordProcessing. The role Agrole as-
signed to our agent is PrintAssistant (along with other pos-
sible roles). One expects that, with the above information,
our agent should select the useful infrastructure component
and invoke the necessary methods. Recall the printer server
we have introduced previously, what if in the next version of
the PrintServer1 we change the method name from Print-
Doc to PrintDocument. Moreover, what if a new server
PrintServer2 is introduced after the agent is deployed. Next
section will elaborate on how OWL-T can be used by the
agent to handle these kind of situations.

3 OWL-T: A Tool Ontology
The information that OWL-T captures is described by Gib-
son as follows:

“... If you know what can be done with a gras-
pable object, what it can be used for, you can call
it whatever you please. ... The theory of affor-
dances rescues us from the philosophical muddle
of assuming fixed classes of objects, each defined
by its common features and then given a name.
... But this does not mean you cannot learn how
to use things and perceive their uses. You do not
have to classify and label things in order to per-
ceive what they afford.” [4, p. 134]

Two approaches for describing the information in the envi-
ronment can be extracted from the definition above.

Epistemic: This approach aims to classify and label things
and relations between them. For example, a table has
four legs, with some height and some color. The main
reasoning task is to determine the semantically similar
objects in the agent’s knowledge base or in the external
knowledge bases generally through some logic infer-
ences.

Pragmatic: This approach is similar to the affordance that
defines the functional nature of an object independent
from its physical properties. For example, a table af-
fords putting objects on it, so does a computer, al-
though they are by no means similar in their physical



properties and may not be related if the epistemic ap-
proach to the information modeling is employed.

The epistemic and the pragmatic approaches to the infor-
mation modeling are complementary [14] and OWL-T is
built with the pragmatic perspective in mind.
Web Ontology Language (OWL) is the selected ontology
language for constructing OWL-T. The three species of
OWL in the order of decreasing expressiveness are: OWL-
Full, OWL-DL and OWL-Lite [8]. OWL-T is built using
OWL-DL which in turn is based on Description Logic (DL)
[3]. In this section, we will briefly introduce DL and its re-
lation to OWL-T.
OWL-DL is chosen for various reasons. First of all, the
formal semantic of DL and well researched inference algo-
rithms [3, Chapter 2] enable agents to execute logic query
over the information model. Secondly, efficient “complete”
and “sound” algorithms for DL have practical outcomes
such as the decidability of the inference. The decidabil-
ity makes DL suitable for the computer programs without
sacrificing much from the expressiveness [3].
Any ontology that is written using DL is composed of two
types of axioms. The first type of axioms is the combination
of two sets of axioms namely the concept axioms (denoted
with C) and the role axioms (denoted with R). The collec-
tion of C and R axioms are labeled as the terminology and
stored in the “TBox (Terminology Box).”
The second type of axioms are employed to relate the con-
crete objects in the domain to the terminology. Take for
example the Tool concept C defined in OWL-T(Table 1).
Then, Tool(PrinterDriver1) is an axiom for the concrete in-
dividual called PrinterDriver1. PrinterDriver1 in turn is
called the “instance” of the Tool concept. The convention
for DL inference engines is to call “ABox (Assertion Box)”
to the collection of axioms about the individuals.
In DL, the semantic of T-Box and A-Box is given in the
model-theoretic form. Model theory3 is an interpretation
of Tarski4 semantic where the set theory is chosen as the
meta language M to define the truth values of the sentences
in the language L . An interpretation I = 〈4I , I〉 for the
language L is defined as the combination of:

1. A non-empty set 4I , a.k.a. domain of interpretation

2. An interpretation function I which assigns

• every atomic concept C to a set CI ⊆ 4I

• every atomic role R to a set of binary relations
RI ⊆ 4I ×4I

For an extensive analysis of DL and its semantic, we refer
the reader to [3].

3.1 OWL-T Terminology

The corresponding axioms for C and R are given in Table
1 and 2 respectively. Quantifiers in the Table 1 should be
interpreted as follows: ∃=1R.C means that there should be
one and only one role R that exists between the concepts of
C. Combination of ∃R.C t ∀R.C means that there exists
at least one or more relations between the concepts of C.
Other quantifiers such as ∃, ∀, and ¬ have usual meanings.
Concepts that are derived from the axioms of Table 1 are
interpreted by mapping the constructors of DL on to the

3http://en.wikipedia.org/wiki/Model-theory
4http://plato.stanford.edu/entries/tarski-truth/

set theory axioms. For example, the semantic for the
complex concept AbstractConcept (line 14 in Table 1)
can be defined as I |= AbstractConcept(x) iff x ∈
AbstractConceptI ⊆ 4I whereAbstractConceptI is the
set defined by the intersection of the sets IdealPropertyI∪
InterfaceI ∪ PhysicalPropertyI and the complement
of ActionModelI ∪ AgentModelI ∪ ObjectModelI ∪
OrganizationModelI .
OWL-T is organized under five concept categories which
are mutually exclusive (lines 1, 5, 8, 11, and 14).

ActionModel: This category (lines 1–5) is used to delin-
eate the activity hierarchy. The activity hierarchy rep-
resents three different types of the agent behavior. The
reactive behavior of the agent is given by the Process
concept (line 4) which is used to define a single step
of the ProcessModel. Process is connected to the
Belief concept through the roles assumption and
effect. The Action concept represents the goal ori-
ented agent behavior. The connection betweenAction
and Goal is established through useCondition and
useResult roles. The Action concept (line 3) is
also linked to the ProcessModel through the role
hasProcessModel. That is,Action is not atomic and
may need a sequence of reactive behavior defined by
the ProcessModel before completion. The Action
concept also defines the Artifact that is the input to
the action and transformed after the Action comple-
tion. Finally, the concept of Activity (line 2) relates
the goals of distinct Actions to a group activity. That
is, Activity is a wrapper which encapsulates Actions
of the otherwise independent agents and defines the
system level goals. The Artifact which is shared and
transformed by differentActions allow us to relate the
actions of different agents. Activity also describes the
Roles via the role actorsInvolved that may take part
in the Activity.

ObjectModel: This category (lines 5–7) construes the
objects in the environment. Artifact (line 6)
is an Object which is transformed through the
Activity and the relation is established via roles
objectInvolved and output (line 2). The second kind
of object in the environment is Tool (line 7) with
two properties: PhysicalProperty inherited from the
ObjectModel and IdealProperty. Any Tool re-
lates its functionality and use procedure through its
IdealProperty. Tool and IdealProperty are com-
bined using the role affords.

OrganizationModel: The category (lines 8–10) is aimed
to put in place the access policies for a particular
Tool through Role and Group definitions. Group
is composedOf Roles (line 9). On the other hand,
Role concept (line 10) has a role called hasGoal to
further enhance the relation between Role and the al-
lowed Actions by the Tool for an agent.

AgentModel: The AgentModel (lines 11–13) is the
union of Belief (line 12), and Goal (line 13).

AbstractConcept: Concepts (lines 14–18) are supple-
mental to the categories above. PhysicalProperty
(line 17) is included in the terminology to sup-
port the spatial and the shape characteristics of an
Object. PhysicalProperty describes the location of



(1) ActionModel ≡ (ActivitytProcesstAction)u¬(AbstractConcepttAgentModeltObjectModelt
OrganizationModel)

(2)
Activity v ActionModelu∀output.Artifactu∃output.Artifactu∀objectInvolved.Artifactu

∃objectInvolved.Artifactu∀actorsInvolved.(RoletGroup)u
∃actorsInvolved.(RoletGroup)u¬(ProcesstAction)

(3)
Action v ActionModelu∀actionParameters.Artifactu∃actionParameters.Artifactu

∀useCondition.Goalu∀useResult.Goalu∀hasProcessModel.ProcessModelu
∃=1hasProcessModel.ProcessModelu¬(ActivitytProcess)

(4) Process v ActionModelu∀assumption.Beliefu∀effect.Beliefu¬(ActivitytAction)

(5) ObjectModel ≡ ∃appears.PhysicalPropertyu∀appears.PhysicalPropertyu¬(AbstractConceptt
ActionModeltAgentModeltOrganizationModel)

(6) Artifact v Objectu∀satisfies.Goalu∃satisfies.Goalu¬Tool
(7) Tool v Objectu∀affords.IdealPropertyu∃affords.IdealPropertyu¬Artifact
(8) OrganizationModel ≡ GrouptRoleu¬(AbstractConcepttActionModeltAgentModeltObjectModel)
(9) Group v OrganizationModelu∀composedOf.Roleu∃composedOf.Roleu¬Role
(10) Role v OrganizationModelu∀hasGoal.Goalu∃hasGoal.Goalu¬Group

(11) AgentModel ≡ (BelieftGoal)u¬(AbstractConcepttActionModeltObjectModelt
OrganizationModel)

(12) Belief v AgentModelu¬(Goal)
(13) Goal v AgentModelu¬(Belief)

(14) AbstractConcept ≡ (IdealPropertytInterfacetPhysicalProperty)u¬(ActionModeltAgentModelt
ObjectModeltOrganizationModel)

(15)
IdealProperty v AbstractConceptu∀hasInterface.Interfaceu∃hasInterface.Interfaceu

∀usedInActivity.Activityu∃usedInActivity.Activityu¬(InterfacetPhysicalPropertyt
ProcessModel)

(16)
Interface v AbstractConceptu∀forRole.Roleu∃=1forRole.Roleu∀supportedActions.Actionu

¬(IdealPropertytPhysicalPropertytProcessModel)
(17) PhysicalProperty v AbstractConceptu∃=1hasShape.>u∃=1hasLocation.>u¬(IdealPropertyt

InterfacetProcessModel)
(18) ProcessModel v AbstractConceptu∃composedOf.Processu∀composedOf.Processu¬(IdealPropertyt

InterfacetPhysicalProperty)

Table 1: OWL-T concept terminology

an Object with the role hasLocation and the shape
of it with hasShape. IdealProperty (line 15) re-
lates a Tool to an Activity. That is, it defines under
whichActivity the Tool is useful. It also describes an
Interface through role hasInterface. Interface
(line 16) formalizes supported Actions for a given
Role via the role supportedActions. Supported ac-
tions cater for the different uses of the Tool. For ex-
ample, a printer can be used to print a document by an
agent. Yet, another agent may use the printer to send
a failure note to a user. A Tool does not allow a ran-
dom Processs to be invoked by the agents in order to
ensure the correct operation of the infrastructure com-
ponent. The concept of ProcessModel (line 18) ar-
ticulates the order of the Process and is composedOf
a set of Processes with an ordering relation.

usedInActivity hasInterface affords
satisfies actionParameters composedOf
appears objectInvolved actorsInvolved
output hasGoal processModel
useCondition useProcedure forRole
assumption effect

Table 2: OWL-T role terminology

3.2 Semantic of OWL-T

The semantic of the concepts in Table 1 is based on spec-
ifying the domain of interpretation 4I . The interpretation
I of the Tool concept is the set inf given in Sec. 2.1.1.
Formally given as follows:

I |= Tool(x) iff x ∈ inf
The relation between OWL-T and the agent model given in
Sec. 2.2 is as follows:

I |= Belief(xi) iff i ∈ Ag ∧ x ∈ Bi ⇒ x ∈ Belief I

I |= Goal(xi) iff i ∈ Ag ∧ x ∈ Gi ⇒ x ∈ GoalI

That is, for every constant in the belief or the goal sets of the
agent, there is a constant in the domain of interpretation4I

that is a member of the sets Belief I or GoalI respectively.
Furthermore, GoalI ∈ G formulates the semantic relation
between the agent goal set and an interpretation of the con-
cept Goal. Moreover, Belief I ∈ IS ∪OS defines that the
agent beliefs are used as the input to the method invocation
and the method outputs are used as the belief updates for
the agent.
The interpretation of the Process concept is the union of
all the methods implemented by the services in the environ-
ment. Formally, the semantic of Process is given by:

I |= Process(x) iff x ∈
⋃

k=0...n

Mk ∧ k ∈ inf



The interpretation of Action is a set of constants. Finally,
concepts Activity and Role are given as follows:

I |= Activity(x) iff x ∈ ActivitySet
I |= Role(x) iff x ∈ RoleSet

4 Pragmatic of OWL-T: Extrospection
In the context of agent communication, Werner [16, p.64]
defined the pragmatic as the transformation of the agent
mental state after receiving a message. In the context
of the agent-infrastructure interaction, the transformation
takes place after two previous phases. In the first phase,
the agent queries OWL-T for the available services that are
usable to reach its goal. In the second phase, the agent will
query the current state of the ProcessModel. That is, the
agent retrieves the method that is allowed by the service.
Finally, the agent’s mental state is updated after the Action
and Process are successfully executed. The extrospection
covers all three steps and enable agents to discover and use
the service to reach their goals. Next three sections will
detail the three steps.

4.1 Infrastructure Query

The infrastructure query Q in (7) returns the infrastruc-
ture components that can be used by the agent. There are
three preconditions to find service that the agent can use.
First, the agent should have access permission to use the
selected service with respect to its Role definition. Second,
the agent should be involved in an Activity for which this
service can provide support. Third, the agent’s goal should
overlap with theGoals defined for theActions that are sup-
ported by the service. We do not consider the case where
multiple candidate services can be returned returned by the
query. Agent’s service selection function is one of the fu-
ture directions. Query function can be captured formally as
follows:

Qi(δ, ρ, λ) = Ek (8)

where: δ, ρ, and λ satisfy I |= (Ek.affords ◦
hasInterface ◦ forRole).Role(ρ) ∧ (Ek.affords ◦
usedInActivity).Activity(λ) ∧ (Ek.affords ◦ hasInter-
face ◦ supportedActions ◦ useCondition).Goal(δ). The
operator ◦ enables us to drop the unnecessary concept
names while traversing the ontology. Above formula
can be expressed with the omitted concept names added
in parenthesis. Ek is the (Tool) which affords an
(IdealProperty) which hasInterface (Interface)
forRole Role ρ and the same (Tool) Ek affords an
(IdealProperty) which defines the usedInActivity for
the Activity δ and again the same (Tool) Ek affords an
(IdealProperty) which hasInterface (Interface) that
defines supportedActions of the form (Action) whose
useCondition is Goal δ.

4.2 Infrastructure Use

As soon as the agent discovers the infrastructure component
that it can use via the query given by (8), it can invoke a par-
ticular Process over the infrastructure component as long
as it has the necessaryBeliefs defined by the assumption
of the Process. The function u in (6) is defined as:

ui(Ek) = α (9)

where: α satisfies ∀ i,k. i ∈ Ag ∧ k ∈ Qi

and I |= (Ek.affords ◦ hasInterface ◦ supportedAc-
tions ◦ hasProcessModel ◦ composedOf).Process(α) and
(α.assumption).Belief ⊆ Bi. The semantic of the operator
◦ is the same as above.
Using (8) and (9), agents can enhance their capabilities
through extrospection. Process invocation over the infras-
tructure component has two effects: first on the component
side and second on the agent side. The effect on the in-
frastructure component is to advance the process model one
step according to the transition function T as given in Sec.
2.1.2. What we define here is the relation between the con-
cept ProcessModel and T.

I |= ProcessModel(x) iff x ∈ Σ

The effect of the Process invocation over the agent mental
state is described next.

4.3 Mental effect

Using the infrastructure component has two effects. The
agent goal set is updated after the Action is accomplished,
whereas the agent belief set is updated after every Process
invocation. For example, assume an Action which is com-
posed of a sequence of five Processes. In this case, be-
liefs Bi of the agent i will be updated five times and the
goals Gi the agent i will be updated only once at the end of
the execution of ProcessModel. Thus, the belief and goal
transition functions NB and NG of the agent are given by:

NG
i (Gi, γ) = δ

NB
i (Bi, ρ) = ψ (10)

For the first entry in the equation, we define γ ∈ Qi

and I |= (γ.affords ◦ hasInterface ◦ supportedActions
◦ useResult).Goal(δ). For the second entry, we de-
fine I |= (γ.affords ◦ hasInterface ◦ supportedActions ◦
hasProcessModel).Process(ρ) ∧ (ρ.effect).Belief(ψ). Over-
all, (8), (9), and (10) define the pragmatic of infrastructure
component use.
Recall our hypothetical agent with the initial belief B of
hasDocument(doc1) and the initial goal G of Print(doc1).
If we assert the facts Tool(PrintServer1), Action(Printing),
Process(Configure), Process(PrintDoc), Goal(Print(doc1))
in OWL-T, agents can discover and use the necessary in-
frastructure component only by querying OWL-T. If one
changes the name of the service or add a new service, all he
needs to do is to assert new facts in OWL-T. There is no
need to change the agent code since the next query will re-
turn the updated information. Next section will give a more
detailed example.

5 Example: Foraging Agents
The implementation presented here should be seen as a
proof of concept and it does not employ all the aspects in-
troduced by OWL-T. However, we see it as a good starting
point to explain the use of OWL-T. Our aim is to show
that the dynamic composition of the infrastructure can be
handled without any modification to the agent code.
We use the Java programming language for this imple-
mentation. Ontology is built using Protégé software [9].
Repast5 is chosen as the simulation environment. Run-
time query is implemented using Jena [5] reasoning engine.

5http://repast.sourceforge.net/



B0
i = {XLocation(x),YLocation(y)} The agent’s initial location on the grid environment

G0
i = {Food} The agent initially search for food

ai = Uniform random distribution to use internal action or infrastructure component action
Qi = Jena implementation for querying OWL-T
ui = Java RMI implementation

NB
i = {XLocation(x),YLocation(y)} that belong to resulting grid after the agent moves

NG
i = {Food} when the agent is at the nest location ∨ {nest} when the agent is at the food location

Table 3: The agent implementation

Runtime invocation and the service use is handled by the
RMI (Remote Method Invocation) packed with Java VM
(Virtual Machine).

5.1 The Scenario

A set of agents need to find the shortest path between
their nest and the food source. We have implemented a
grid world environment of the size 25 × 25 using Repast.
Two infrastructure components, namely Pheromone and
Signpost were developed. Agents were implemented as
Java threads and distributed randomly in the grid world at
the initialization. The location of the food and the nest was
fixed in every simulation.

5.2 Agents

The agent name set is Ag = {ag1, ag2, ...agn}. The belief
set is defined as BS = {XLocation(x), Y Location(y)}
that refers to the location of the agent in the grid world. The
goal set of every agent is defined as G = {Food,Nest}
which specifies the goal for reaching the food location
and the nest location respectively. Agents are associated
with the Role = {foragingAgent} and the Activity =
{foraging}. Agents themselves are capable of moving
randomly and have an internally defined action Aa =
{MoveRandom}.
No direct reference to the infrastructure components and
their use is given in the agent code. The agents are only
employed with the query function to query the environment
for the infrastructure components that can be used during
foraging. The information about both the functionality
and the use procedure of the infrastructure components are
embedded in OWL-T so agents can retrieve which Actions
are supported and which Processes can be executed over
the infrastructure component. Therefore, agents can inter-
act with the infrastructure without a priori knowledge about
the environment.
Table 3 defines the initial state of the agent when the simu-
lation starts and the belief and goal transforming functions
that manipulate the initial states as the agent continues its
foraging Activity.

5.3 Infrastructure Components

The first infrastructure component that can be exploited by
the agents to reach their goals is called Pheromone. Dy-
namic of Pheromone is given by Parunak in [12]. At every
simulation step, agents can use Pheromone or make a ran-
dom move to determine their position in the next step of the
simulation. The environment, on the other hand, is respon-
sible for the pheromone diffusion and evaporation which
are independent from the actions of the agents.

The second infrastructure component is called SignPost
that points to the neighbouring grid closer to the nest loca-
tion if the agent has the Goal Nest. Otherwise, the sign
shows the neighbouring grid that is closer to the food if the
agent has the Goal Food.
Concrete infrastructure is implemented in Java.
The Pheromone corresponds to the component
“Pheromone.java” and the SignPost has the corre-
sponding class file “SignPost.java.” They both have
usedInActivity being foraging. Both components are
intially defined for Role = {dummy}.
Methods, Mpheromone = {FollownestPheromone, Follow-
FoodPheromone}, are implemented by Pheromone.java.
Similarly, SignPost.java implements methodsMsignpost =
{FollownestSign, FollowFoodSign}. Actions Ai = Go-
ingnest, GoingFood are defined in OWL-T to relate the
methods above to the goals nest and Food respectively.

5.4 Simulation Results

Simulation was done through three consequent phases.
First, neither SignPost nor Pheromone were acces-
sible to the agent since we set the forRole entry of
both infrastructure components to dummy. As a re-
sult, when the agents with foragingAgent Role queried
OWL-T none of the infrastructure components were re-
turned to the agents. Under this circumstance, the only
action that agents could execute was the RandomMove.
Later in the second phase, we set the forRole entry of
the Pheromone to foragingAgent. Agents started to
exploit the Pheromone and their behavior was changed
from the random move to the pheromone following. In
the third phase, SignPost was made available instead of
Pheromone by following the same procedure.
Changes were made at the run time and the agent code was
not changed. Since agents were querying the available in-
frastructure components and their use procedure through
OWL-T, we only updated OWL-T as described above. An
agent that retrieve the name and the use procedure of the
infrastructure component invoked the methods via RMI.
Thus, a direct reference to the infrastructure component was
not necessary and the agents could discover and use the in-
frastructure component at the run time.

6 Conclusion and Future Directions
Semantic interoperability lets agents to reason about the
functionality and the use of the infrastructure, hence agents
can better adapt to the changing components. Since
OWL-T is function oriented (pragmatic), it enables agent
to discover and use infrastructure components without any
a priori knowledge of them. Thus, OWL-T supports extro-
spection which is defined as “observation or examination of



things external to the self; examination and study of exter-
nals.”
We believe that the implications of extrospection are far
reaching. One such implication is to control the agent
behavior and the composition of the environment without
modifying the agent code. For example, the environment
designer may define the access policies for an infrastruc-
ture component, based on the Role of an agent. The al-
lowed agents may reach their goals in a way that has not
been defined explicitly in its code. The environment en-
gineer may also define how the infrastructure component
can be used by modifying the ProcessModel. This results
in an enhanced control over the behavior of the agents and
their coordination.
As a future work, we plan to enhance the ProcessModel.
Currently, we assume a sequential ProcessModel with no
branching, which limits the set of processes that can be ex-
pressed. The remedy to this drawback is readily available
in the extensive process definition of OWL-S [7] and it may
be the next step for OWL-T to adopt the process model of
OWL-S. A second improvement would be to identify the
means for choosing an infrastructure component in situa-
tions where there is more than one candidate. In that case,
there should be an ordering relation over the infrastructure
components so that agents can make a choice. An evalua-
tion function of some sort will strengthen the link between
the service use and the agent deliberation. We are also con-
sidering the work done by Ricci et. al. [13]. They brought
fore the artifact abstraction, which corresponds to the enti-
ties in the environment other than agents. We believe that
merging the artifact framework and the semantic interoper-
ability will benefit us both terminologically and conceptu-
ally for developing the future MAS.
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